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Preface

We live in a digital world surrounded by signals. Therefore, understanding and pro-
cessing these signals is one of the most important skills a graduating or postgraduate
engineer can possess. Arm Cortex-M based microcontrollers provide a low-cost and
powerful platform for this purpose. This book aims to introduce the basics of digital
signal processing on these microcontrollers and the theory behind it and includes a
set of labs that handle the practical side of digital signal processing. We believe that
this book will help undergraduate and postgraduate engineering students to bridge the
gap between the theoretical and practical aspects of digital signal processing, so they
can grasp its concepts completely. As a result, they will be ready to apply digital signal
processing methods to solve real-life problems in an effective manner. This will be a
valuable asset in today’s competitive job market.

About This Book

This book is not purely about the theory of digital signal processing, nor is it solely
about the practical aspects of digital signal processing. We believe that it is not possible
to implement a DSP algorithm without knowing its theoretical merits and limitations.
Moreover, theory is not sufficient alone to implement a DSP algorithm. Therefore, we
cover DSP theory in this book, and then we explore these theoretical concepts through
practical applications and labs. The aim is to bridge the gap between theory and practice.

In this book, we assume that you have some basic knowledge of signal processing.
Therefore, theory is only provided when necessary and we do not go into great detail.
However, we do provide a further reading section at the end of each chapter, where we
provide references that are relevant to the concepts covered in that chapter. These may
help you to extend your knowledge further.

The topics covered in this book are as follows. Chapter 2 introduces the mathematical
and practical basics that will be used throughout the book. Chapter 3 discusses the
Z-transform used to analyze discrete-time signals and systems in the complex domain.
It will become clearer that some analyses will be easier to perform in this domain. In
relation to this, Chapter 4 introduces frequency domain analysis in discrete time. In this
chapter, you will learn how to analyze a discrete-time signal and system in the frequency
domain. This will also uncover a method for designing and implementing filters in the
frequency domain. Chapter 5 covers analog–digital conversions. These concepts are
vital in understanding the relationship between analog and digital signals. Chapter 6
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introduces methods of processing analog signals in a digital system. This chapter also
focuses on methods of representing an analog system in digital form. Chapter 7 covers
ways of representing a discrete-time system in different structural forms. Chapter 8
covers filter design, which is an important topic in digital signal processing. Chapter 9
focuses on adaptive signal processing concepts. This is one of the strengths of digital
systems because their parameters can be easily changed on the fly. Chapter 10 explores
fixed-point number representation issues. In this chapter, we observe that these issues
have a direct effect on hardware usage, computation load, and the obtained result.
Chapter 11 covers real-time digital signal processing concepts, which are extremely
important for real-life applications with timing constraints.

A Note about Online Resources

This book includes a number of online resources that are accessible to readers of both
the print and ebook versions, including answers to the end-of-chapter exercises and
lab tasks, as well as code and other materials useful for the lab tasks. To access these
resources, please visit the Arm Connected Community, https://community.arm.com/,
and search for the book title. You may need to create an account first.
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1.1 Introduction

The aim of this book is to introduce you to the concepts of digital signal processing
(DSP). To do so, the first step is explaining what a signal is and how to process it using
a system. This chapter briefly introduces these concepts and explains why digital signal
processing is important in today’s world.

1.2 Definition of a Signal and Its Types

We perceive the world around us through our sensory organs. When an event occurs, a
physical effect is generated. A sensor in our body receives this effect, transforms it into
a specific form, and sends the result to our brain. The brain processes these data and
commands the body to act accordingly. An electronic system works in a similar manner.
There are various sensors (such as microphones, cameras, and pressure sensors) that
transform a physical quantity into electronic form. If a sensor output changes with time
(or another variable), we call it a signal. More generally, we can define a signal as data
that change in relation to a dependent variable. A signal can be processed by a system to
either obtain information from it or to modify it.

1.2.1 Continuous-Time Signals

If an acquired signal is in analog form, then we call it a continuous-time signal. A system
that processes a continuous-time signal is called a continuous-time system. Assume that
we form an analog microphone circuitry to display audio signals on an oscilloscope
screen. If we say the word “HELLO,” we will see a continuous-time signal on the screen
as shown in Figure 1.1. This signal can be further processed by a continuous-time system
composed of analog devices.

oscilloscope
A laboratory instrument commonly used to display and analyze the waveform of electronic signals.

1.2.2 Discrete-Time Signals

Although processing a continuous-time signal with a continuous-time systemmay seem
reasonable, this is not the case for most applications. An alternative method is to sample
the signal discretely. This corresponds to a discrete-time signal. Let us take a section of a
continuous-time signal as in Figure 1.2(a). Taking 44,100 samples per second from it, we
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Figure 1.1 The word “HELLO” displayed as a continuous-time signal.

can obtain the corresponding discrete-time signal shown in Figure 1.2(b). In this case,
the amplitude of each sample is real-valued.

amplitude
The maximum deviation of a quantity from a reference level.

1.2.3 Digital Signals

In a digital system (such as a microcontroller), a discrete-time signal can be represented
as an array, where each sample in the signal is an array entry. This array cannot hold
real values and can only store values with limited range and resolution. Think of an
integer array in the C language. Each array entry can only be represented by a certain
number of bits. This will also be the case if the array is composed of float or double
values. Therefore, the amplitude of the discrete-time signal should be quantized. The
resulting signal is called a digital signal. Figure 1.3 shows the digital signal for the same
section of signal we used in Figure 1.2. In this case, the signal is stored in a float array.

quantization
The process of mapping sampled analog data into non-overlapping discrete subranges.
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Figure 1.2 Part of the continuous-time signal and its sampled discrete-time version.
(a) Continuous-time signal; (b) Discrete-time signal.
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Figure 1.3 The digital signal.

float
The keyword for a floating-point data type with single precision.

Discrete-time signals and systems are preferred because they simplify the mathemat-
ical operations in theoretical derivations. On the contrary, digital signals and systems
are necessary for implementation. This means that books focusing on the theoretical
aspects of signal processing use discrete-time signal and system notations. Books on
signal processing hardware and software use digital signal processing notations. Because
this book aims to bridge the gap between theory and practice, we use the terms discrete
time and digital interchangeably. To be more precise, we call a signal (or system)
discrete-time when we explain its theoretical aspects, and we call it digital when we
implement it.

1.3 Digital Signal Processing

In the past, analog systems were the only option for processing continuous-time signals.
With the introduction of powerful hardware, digital signal processing has become
more popular. Arm’s Cortex-M based microcontrollers provide a low-cost and powerful
platform for using DSP in practical applications. This book focuses on the theoretical
and practical aspects of DSP concepts on Arm Cortex-M based microcontrollers.
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The beauty of DSP is in its implementation because fixed analog hardware is generally
not required. Instead, a suitable microcontroller is often sufficient for implementation.
In fact, the DSP system will simply be a code fragment, which has several advantages.
First, if the system does not satisfy design specifications, it can be redesigned by simply
changing the relevant code block, and there is no need to change the hardware. Second,
system parameters can be changed on the fly, which is extremely important for adaptive
and learning systems. Moreover, if the microcontroller has communication capabilities,
these parameters can be modified from a remote location. The abovementioned advan-
tages make DSP more advantageous than continuous-time signal processing via analog
equipment.

1.4 Lab 1

1.4.1 Introduction

The STM32F4 Discovery kit is the main hardware platform used in this book. It has a
microcontroller, which is based on the Arm Cortex-M4 architecture. This lab introduces
the properties of the kit and the microcontroller. While doing this, standard software
packages will be used to simplify operations. Later on, the “AUP audio card”1 will
be introduced for use in audio processing. Being familiar with the properties of the
discovery kit and the audio card will help in implementing and running the codes given.

1.4.2 Properties of the STM32F4 Discovery Kit

The STM32F4 Discovery kit has an STM32F407VGT6 microcontroller on it. In this
section, we briefly introduce the microcontroller and the architecture of the kit.

The STM32F407VGT6Microcontroller

The STM32F407VGT6 microcontroller is based on the 32-bit Arm Cortex-M4 archi-
tecture, which has Reduced Instruction Set Computing (RISC) structure. The micro-
controller uses a decoupled three-stage pipeline to separately fetch, decode, and execute
instructions. To be more specific, this operation can be summarized as follows. While
the first instruction is being executed, the second one is decoded, and the third one is
fetched. This way, most instructions are executed in a single CPU cycle. Related to this,
with the help of pipelined RISC structure, Cortex-M4 CPU cores can reach a processing

1. Audio card from the Arm University Program
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power of 1.27 and 1.25 DMIPS/MHz with and without the floating-point unit (FPU),
respectively.

Reduced Instruction Set Computing (RISC)
A microprocessor design strategy based on the simplified instruction set.

fetch
The first step of a CPU operation cycle. The next instruction is fetched from the memory address that is
currently stored in the program counter (PC) and stored in the instruction register (IR).

decode
The second step of a CPU operation cycle, in which the instruction inside the instruction register is decoded.

execute
The last step of a CPU operation cycle in which the CPU carries out the decoded information.

DMIPS (Dhrystone Million Instructions per Second)
A measure of a computer’s processor speed.

The Cortex-M4 CPU core uses a multiply and accumulate (MAC) unit for
fixed-point calculations. This unit can execute most instructions in a single cycle
with 32-bit data multiplication and hardware divide support. The hardware FPU
can carry out floating-point calculations in a few cycles, compared to hundreds of
cycles without the FPU. The FPU supports 32-bit instructions for single-precision
(C float type) data-processing operations. It has hardware support for conversion,
addition, subtraction, multiplication with optional accumulate, division, and square
root operations. The Cortex-M4 CPU core has an additional set of instructions to
perform parallel arithmetic operations in a single processor cycle for DSP-specific
applications.

multiply and accumulate unit
A microprocessor circuit that carries a multiplication operation followed by accumulation.
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The Cortex-M4CPU core also has a nested vectored interrupt controller (NVIC) unit,
which can handle 240 interrupt sources. The NVIC, which is closely integrated with
the processor core, provides low latency interrupt handling. It takes 12 CPU cycles to
reach the first line of the interrupt service routine code. Additionally, the Cortex-M4
structure has a memory protection unit (MPU), a wake-up interrupt controller (WIC)
for ultra-low power sleep, instruction trace (ETM), data trace (DWT), instrumentation
trace (ITM), serial/parallel debug interfaces for low-cost debug and trace operations,
an advanced high-performance bus (AHB), and an advanced peripheral bus (APB)
interface for high-speed operations.

interrupt
A signal to the processor emitted by hardware or software to indicate an event that needs immediate
attention.

nested vectored interrupt controller (NVIC)
ARM-based interrupt handler hardware.

memory protection unit
The hardware in a computer that controls memory access rights.

wake-up interrupt controller
A peripheral that can detect an interrupt and wake a processor from deep sleep mode.

advanced high-performance bus
An on-chip bus specification to connect and manage high clock frequency system modules in embedded
systems.

advanced peripheral bus
An on-chip bus specification with reduced power and interface complexity to connect and manage high
clock frequency system modules in embedded systems.

The STM32F407VGT6 microcontroller has an Arm Cortex-M4 core with a 168-MHz
clock frequency, 1 MB flash memory, 192 KB static random access memory (SRAM),
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an extensive range of enhanced I/Os and peripherals connected to two APB buses,
three AHB buses, and a 32-bit multi-AHB bus matrix. The STM32F407VGT6 micro-
controller has three 12-bit ADCs, two digital to analog converters (DACs), a low-power
real-time clock (RTC), two advanced-control timers, eight general-purpose timers, two
basic timers, two watchdog timers, a SysTick timer, a true random number generator
(RNG), three I2C modules, three full-duplex serial peripheral interface (SPI) modules
with I2S support, four universal synchronous/asynchronous receiver/transmitter (US-
ART) modules, two universal asynchronous receiver/transmitter (UART) modules, a
high-speed and a full-speed USB on-the-go (OTG) module, two controller area network
(CAN) modules, two direct memory access (DMA) modules, a secure digital input
output (SDIO)/multimedia card (MMC) interface, an ethernet interface, and a camera
interface.

static random access memory
Static, as opposed to dynamic, RAM retains its data for as long as its power supply is maintained.

digital to analog converter
A device that converts a digital value to its corresponding analog value (e.g., voltage).

watchdog
A timer in an embedded system that is used to detect and recover from malfunctions.

serial peripheral interface
A serial communication bus used to send data, with high speed, between microcontrollers and small
peripherals.

universal synchronous/asynchronous receiver/transmitter
A serial communication bus commonly used to send data, both synchronously and asynchronously,
between microcontrollers and small peripherals.

universal asynchronous receiver/transmitter
A serial communication bus commonly used to send data, asynchronously, between microcontrollers and
small peripherals.
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on-the-go
A USB specification that allows a USB device to act as a host, allowing other USB devices to connect to
themselves. Also called USB on-the-go.

controller area network
A vehicle bus standard designed to allow microcontrollers and devices to communicate with each other, in
applications, without a host computer.

direct memory access
A mechanism whereby data may be transferred from one memory location to another (including
memory-mapped peripheral interfaces) without loading, or independently of, the CPU.

secure digital input output
A circuit that allows the sending of data to external devices using Secure Digital (SD) specification.

multimedia card
A memory card standard used for solid-state storage.

The STM32F4 Discovery Kit

The STM32F4 Discovery kit has an ST-Link/V2 in-circuit debugger and programmer, a
USB mini connector for power and debug operations, a USB Micro-AB connector for
USB OTG operations, a reset button, a user push button, and four LEDs available to the
user. It also has an 8-MHz main oscillator crystal, ST-MEMS three-axis accelerometer,
ST-MEMS audio sensor, and a CS43L22 audio DAC with an integrated class-D speaker
driver. The kit supports both 3.3 V and 5 V external power supply levels.

MEMS (Micro-Electro-Mechanical Systems)
Microscopic mechanical or electro-mechanical devices.

accelerometer
A device that measures change in velocity over time.
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1.4.3 STM32Cube Embedded Software Package

STM32Cube is the software package released by STMicroelectronics for the STM32
family of Arm Cortex-M based microcontrollers. It contains a low-level hardware ab-
straction layer (HAL) and board support package (BSP) drivers for on-board hardware
components. Additionally, a set of examples and middleware components are included
in the STM32Cube package.

Including STM32Cube in a Project

STM32Cube is available in Keil µVision. In order to use it in a project, STM32Cube
should be enabled from the Manage Run-Time Environment window by selecting
Classic under STM32Cube Framework (API) as shown in Figure 1.4. Desired HAL
drivers can then be selected from the STM32Cube HAL list.

Figure 1.4 STM32Cube configuration by managing the run-time environment.

For our applications,Common,Cortex, PWR,RCC, andGPIOmust be added before
adding other HAL drivers. Some HAL drivers are connected, so they should be added
together for them to work. Finally, the stm32f4xx_hal.h header file should be
added at the top of the project’s main.c file. Then, HAL drivers can be used in the
source code.
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Using BSP Drivers in the Project

To use BSP drivers in the project, first we need to specify the include folder for BSP
drivers. To do this, click on the Options for Target button located in the toolbar,
or select it from the Project tab. Click the ... button next to the Include Paths text
area from the C/C++ tab. Then, add the full path of source files for BSP drivers un-
der Keil’s installation directory (...\Arm\Pack\Keil\STM32F4xx_DFP\DFP_
version\Drivers\BSP\). Finally, clickOK twice.

Application-specific header files must also be included in the source code. To add
these specific files to the project, right click on the Source Group 1 folder (in the
Project window) and select “Manage Project Items...” as shown in Figure 1.5. From
the pop-up window, click the Add Files button and navigate to the folders that contain
the desired files.

Figure 1.5 Adding BSP source files to the project.

Let us provide two examples on this topic. We use the onboard accelerometer from
Section 1.4.6. To use it, you should add the lis3dsh.c and lis302dl.c files
from the ...\Arm\Pack\Keil\STM32F4xx_DFP\DFP_version\Drivers\
BSP\Components\lis3dsh and ...\Arm\Pack\Keil\STM32F4xx_DFP\

DFP_version\Drivers\BSP\Components\lis302dl folders. You should
also add the stm32f4�discovery.c and stm32f4�discovery�accelero

meter.c files, along with their associated .h files, from the ...\Arm\Pack\Keil\
STM32F4xx_DFP\DFP_version\Drivers\BSP\STM32F4-Discovery fol-
der. Similarly, if you want to use the onboard audio codec, then you should add
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the lis302dl.c file from the ...\Arm\Pack\Keil\STM32F4xx_DFP\DFP_
version\Drivers\BSP\Components\lis302dl folder. The stm32f4�

discovery.c and stm32f4�discovery�audio.c files should also be added
from the ...\Arm\Pack\Keil\STM32F4xx_DFP\DFP_version\Drivers\
BSP\STM32F4-Discovery folder.

codec (coder-decoder)
A device or computer program that allows the encoding or decoding of a digital data stream or signal.

1.4.4 STM32F407VGT6Microcontroller Peripheral Usage

We use the STM32F407VGT6 microcontroller peripherals through HAL drivers. The
HAL driver library contains a set of generic and extension APIs, which can be used by
peripheral drivers. While generic APIs are applicable to all STM32 devices, extension
APIs can be used by a specific family or part number. The HAL library should be
initialized first in order to use peripheral-specific HAL drivers in a project. We provide
the general header file hal�config.h for peripheral configuration using HAL drivers
in Online_Student_Resources\Lab1.

Although the STM32F407VGT6 microcontroller has a wide variety of peripherals, we
will only mention the ones used in this book. We now focus on the peripherals we use.

Power, Reset, and Clock Control

HAL power control functions can be used to adjust the power configuration of the
STM32F407VGT6 microcontroller. To do so, the APB interface should be enabled first
after reset. Furthermore, low-power modes can be configured through these functions.

As mentioned in the previous section, we have the general header file hal�

config.h for peripheral configuration. After initializing the HAL library, if this
header file is included in the project, the SystemClock�Config function can be
used to set the maximum clock frequency. You can make necessary changes to the
power, reset, and clock configuration through this function.

General-Purpose Input and Output

The STM32F407VGT6 microcontroller has six physical general-purpose input and
output (GPIO) ports, namely Port A, B, C, D, E, and H. These ports support up to
82 programmable input/output pins. These pins are called PA0-15, PB0-15, PC0-15,
PD0-15, PE0-15, and PH0-1. All programmable input/output pins are accessible from
the STM32F4 Discovery kit.
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input/output
A circuit in an embedded system that connects the system to the external world.

The STM32F4 Discovery kit has one push button and four LEDs. The connections
for these components are provided in Table 1.1. The push button is connected as weak
pull-down, so the internal pull-up/down resistorsmust be used for it.

resistor
A passive electrical component designed to implement electrical resistance as a circuit element.

pull-down resistor
A pull-down resistor (to a negative power supply voltage) ensures that a signal conductor adopts a valid
(electrical) logic level (low) in the absence of any other connection.

pull-up resistor
A pull-up resistor (to a positive power supply voltage) ensures that a signal conductor adopts a valid
(electrical) logic level (high) in the absence of any other connection.

Basic HAL GPIO functions can be used to configure GPIO pins. In these, GPIO
pins are configured as floating input. During and after reset, all alternate functions
and external interrupts are disabled by default. Here, the AHB clock used for the GPIO
port must be enabled first using the ��GPIOx�CLK�ENABLE() function. Then, the
GPIO pins should be initialized using the HAL�GPIO�Init() function. Here, each
GPIO pin can be configured as a digital input, digital output, or peripheral specific
pin. Optionally, output drive strength, pull-up/down resistors, speed, and open-drain
options for a GPIO pin can also be configured.

Table 1.1 Push button and LED
connections.

GPIO Pin Component

PD13 LD3 LED (Orange)

PD12 LD4 LED (Green)

PD14 LD5 LED (Red)

PD15 LD6 LED (Blue)

PA0 Push button 1 (B1)



Chapter 1: Digital Signal Processing Basics 17

floating input
An input pin with no signal source or termination connected.

open-drain
An output pin driven by a transistor, which pulls the pin to only one voltage.

Weprovide a sample project on the usage of GPIO functions inOnline_Student_
Resources\Lab1\GPIO_Example. This project uses the hal�config.h header
file for peripheral configuration. If another configuration setting is required, such as
using more than one port as input or output, then it should be performed manually.
Here, pins 12, 13, 14, and 15 of the GPIO D port are defined as output. These are
connected to the onboard LEDs of the STM32F4 Discovery kit. Pin 0 of the GPIO A
port is defined as input, which is connected to the onboard push button of the STM32F4
Discovery kit. The sample project controls the status of LEDs with this push button.

There is also a counter in the code. Pressing the push button increases this counter.
When the counter is at zero, all LEDs are turned off. When the counter is at one, the
orange LED turns on. When the counter is at two, the green LED turns on. When the
counter is at three, the red LED turns on. Finally, when the counter is at four, the blue
LED turns on. Furthermore, there is a software debouncer to prevent any glitches due to
a button press.

Interrupts

A total of 82maskable interrupt channels and 16 interrupt lines in the STM32F407VGT6
microcontroller can be prioritized as 16main and 16 sub-levels. Interrupts are controlled
by the NVIC.

A brief summary of how the NVIC works is as follows. While the CPU is executing a
non-interrupt code, it is said to be in thread mode. When an interrupt flag is raised, the
NVIC will cause the CPU to jump to the appropriate interrupt service routine (ISR) and
execute the code. At this stage, the CPU is said to be in handler mode. While switching
from thread to handler mode, the NVIC performs two operations in parallel. First, it
fetches the exception vector, which holds the address of the related ISR. Second, it pushes
necessary key register content to the stack. Whenever the CPU is in thread mode, this
process takes exactly 12 clock cycles (independent of the code executed).

interrupt flag
A register bit used for indicating related interrupt status.
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stack
A data structure in which items are removed in the reverse order from that in which they are added, so that
the most recently added item is the first one removed.

Exception vectors are stored in an interrupt vector table. This table is located at the
start of the address space, which is predefined as part of the startup code. A label for
each ISR is stored at each interrupt vector location. To create an ISR function, a void
C function must be declared using the same name as the interrupt vector label. When
the program counter reaches the end of the ISR function, the NVIC forces the CPU to
return from handler mode to the point in thread mode that it left. At this point, key
register data are also retained from the stack.

The interrupt flag should be cleared at the beginning of handler mode in order to not
miss any other generated interrupts. If the interrupt flag is cleared at the beginning of
the ISR function and a new interrupt flag is raised while in handler mode, then the latter
interrupt is nested. It waits until the former ISR function is executed. If two interrupt
flags are raised at the same time, the CPU fetches the highest priority one first and nests
the lower priority one. Moreover, if the interrupt flag is not cleared before returning
from handler mode, the NVIC causes the CPU to incorrectly jump back to handler
mode.

The HAL library has special functions to handle interrupts. These functions en-
able and disable interrupts, clear pending interrupt requests, and set the priority of
interrupts.

The ISR function must be linked to the related interrupt vector before an interrupt
is used. Normally, all unused interrupt vectors are linked to Weak interrupt functions
in the startup�stm32f407xx.s file. When an interrupt is used, the related ISR
function should be redefined. All ports have external interrupt/event capability. Each of
the 16 external interrupt lines are connected to the multiplexed output of six GPIO ports
of the microcontroller. For example, pin 0 of each port is connected to Line0, pin 1 of
each port is connected to Line1, and so on. The port must be configured as the input
mode to use external interrupt lines.

We provide a sample project on the usage of interrupt and GPIO functions in
Online_Student_Resources\Lab1\Interrupts_Example. This project
does the same job as the one given in GPIO_Example. The only difference here is
that the program execution is controlled by interrupts. Again, pins 12, 13, 14, and
15 of the GPIO D port are defined as outputs, which are connected to the onboard
LEDs of the STM32F4 Discovery kit. Pin 0 of the GPIO A port is defined as an
external interrupt source, which is connected to the onboard push button of the
STM32F4 Discovery kit. This pin is set to generate an interrupt when the button is
pressed.
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Timers

There are 17 timer modules in the STM32F407VGT6 microcontroller. These are two
advanced-control timers, 10 general-purpose timers, two basic timers, two watchdog
timers, and one SysTick timer. These are briefly described below.

Advanced-control timers (TIM1, TIM8): 16-bit three-phase pulse width modulation
(PWM) generators multiplexed on six channels with full modulation. Can be used as a
general-purpose timer.

pulse width modulation
A modulation technique that generates variable-width pulses to represent the amplitude of an analog input
signal.

General-purpose timers (TIM3 and TIM4): Full-featured general purpose 16-bit
up, down, and up/down auto-reload counter. Four independent channels for input
capture/output compare, and PWM or one-pulse mode output.

General-purpose timers (TIM2 and TIM5): Full-featured general-purpose 32-bit
up, down, and up/down auto-reload counter. Four independent channels for input
capture/output compare, and PWM or one-pulse mode output.

General-purpose timers (TIM10, TIM11, TIM13, and TIM14): 16-bit auto-reload
up counter and a 16-bit prescaler. One independent channel for input capture/output
compare, and PWM or one-pulse mode output.

General-purpose timers (TIM9 and TIM12): 16-bit auto-reload up counter and a
16-bit prescaler. Two independent channels for input capture/output compare, and
PWM or one-pulse mode output.

Basic timers (TIM6 and TIM7): 16-bit auto-reload up counter and a 16-bit prescaler.
Mainly used for DAC triggering and waveform generation.

Independent watchdog timer: 12-bit down counter and 8-bit prescaler. Clocked from
an independent 32 kHz internal RC oscillator. Operates independently of themain clock.
Can be used as a free-running timer.

Window watchdog timer: 7-bit down counter. Clocked from the main clock. Can be
used as a free-running timer.

SysTick timer: 24-bit down counter. Integrated into Cortex M4 core. Mainly used
for generating a timer-based interrupt for use by an operating system. Whenever the
predefined function HAL�Init() is added to the project, it is set to interrupt every
millisecond. The HAL�Delay() function uses the SysTick to generate delay.

We will only use timers to generate time bases in this book.We will not consider other
timer modes, such as capture, compare, PWM, one-shot, SysTick, and watchdog.

The HAL library provides generic and extended functions to control timers. These
functions are used for enabling and disabling timers, setting time bases, configuring
clock sources, and starting and stopping timers. In order to use a timer module, its
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clock source, clock divider, count mode, frequency, and period must first be configured
and initialized. Then, the AHB clock and interrupt for the timer module in use should
be enabled. Interrupt priorities should also be set in the specific package initialize
function. Finally, the timermodule should be started in blocking (polling), non-blocking
(interrupt), or DMAmode. The time duration generated by the timer module in seconds
can be calculated as

Duration=
(TimerPrescaler+ 1)(TimerPeriod+ 1)

TimerClock
(1.1)

We provide a sample project on the usage of timer functions and interrupts in
Online_Student_Resources\Lab1\Timers_Example. This project uses the
hal�config.h file to configure the timer module. Here, pins 12, 13, 14, and 15 of the
GPIO D port are defined as outputs, which are connected to the onboard LEDs of the
STM32F4 Discovery kit. The timer frequency is set to 10 kHz, and the timer period is set
to 10000. This means an interrupt is generated every 10000 clock cycles. In other words,
the interrupt period is 1 s. In the timer ISR, onboard LEDs are turned on one by one in
a similar way to the GPIO_Example.

Analog to Digital Converter

There are three identical 12-bit analog to digital converter (ADC) modules in the
STM32F407VGT6 microcontroller. These are called ADC0, ADC1, and ADC2. Each
ADC module has 16 external inputs, two internal inputs, a VBAT input, analog to digital
converter block, data register blocks, interrupt control block, and trigger blocks. ADC
modules share 16 analog input channels. The channels and pins related to them are listed
in Table 1.2.

analog to digital converter
A device that samples and quantizes an analog input signal to form a corresponding/representative digital
signal.

ADC modules in the STM32F407VGT6 microcontroller are based on the successive
approximation register method. These can run in independent or dual/triple conversion
modes. In the independent conversion mode, the ADC module can conduct single con-
version from single-channel, single conversion from multichannel (scan), continuous
conversion from single-channel, continuous conversion from multichannel (scan), and
injected conversion. In dual or triple conversion modes, the sampling rate of the ADC
module can be increased with configurable interleaved delays. Here, sampling rate is
the number of digital samples obtained per second (sps). The speed of the analog to
digital converter block defines the sampling rate of the ADC module in single mode.
The clock for the ADC block (ADCCLK) is generated from the APB2 clock divided by
a programmable prescaler. This allows the ADC module to work with clock speeds of
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Table 1.2 STM32F407VGT6 microcontroller
analog input channels.

Pin Number Pin Name Channel Name

23 PA0 ADC{1, 2, 3}_IN0

24 PA1 ADC{1, 2, 3}_IN1

25 PA2 ADC{1, 2, 3}_IN2

26 PA3 ADC{1, 2, 3}_IN3

29 PA4 ADC{1, 2}_IN4

30 PA5 ADC{1, 2}_IN5

31 PA6 ADC{1, 2}_IN6

32 PA7 ADC{1, 2}_IN7

35 PB0 ADC{1, 2}_IN8

36 PB1 ADC{1, 2}_IN9

15 PC0 ADC{1, 2, 3}_IN10

16 PC1 ADC{1, 2, 3}_IN11

17 PC2 ADC{1, 2, 3}_IN12

18 PC3 ADC{1, 2, 3}_IN13

33 PC4 ADC{1, 2}_IN14

34 PC5 ADC{1, 2}_IN15

up to 42 MHz. The total conversion time is the sampling time plus 12 clock cycles. This
allows a sample and conversion rate of up to 2.8 Msps.

sampling
The process of obtaining values at specific time intervals.

The analog to digital conversion operation is initiated by a trigger in the ADC
module. The source for this can be software, internal hardware, or external hard-
ware in the STM32F407VGT6 microcontroller. A software trigger is generated by the
HAL�ADC�Start function. The internal hardware trigger can be generated by timer
events. The external hardware trigger can be generated by EXTI�11 or EXTI�15 pins.

In this book, we only use the ADC modules in single-channel and single conversion
mode.

The HAL library provides generic and extended functions to control ADC modules.
In order to use the ADC module, its clock divider, conversion mode, and resolution
must first be configured and initialized. Then, the AHB clock and the interrupt used for
the ADC module should be enabled. Next, the GPIO pin used in operation should be
configured as analog input. Interrupt priorities should also be set in the specific package
initialize function. Then, the sampling time and channel should be configured. The
ADCmodule should be started in blocking (polling), non-blocking (interrupt), or DMA
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mode. When the conversion is complete, the digital value should be read from the ADC
register.

We provide three sample projects on the usage of ADC modules in Online_

Student_Resources\Lab1\ADC_Examples. The first project uses the internal
temperature sensor. Here, ADC1 is configured for 12-bit single conversion from Chan-
nel 16 (internal temperature sensor). It is set to be triggered with software. ADCCLK
is set to 42 MHz. Sampling time is set to 84 cycles, which leads to approximately 437.5
Ksps. When the converted data are read, they are scaled to yield a temperature output in
degrees Celsius. The second project uses the software trigger in the ADC module. Here,
the PA1 pin is used as the ADC channel. The ADC1 module is configured for 12-bit
single conversion from Channel 1. ADCCLK is set to 42 MHz. Sampling time is set to
three cycles, which leads to approximately 2.8 Msps. The third project uses the ADC
module with a timer trigger. Here, the PA1 pin is used for the ADC channel. The ADC1
module is configured for 12-bit single conversion from Channel 1. The timer module
triggers the ADC every 1/10000 s. Moreover, the ADC interrupt is enabled so that an
interrupt is generated when the conversion ends.

Digital to Analog Converter

There is one module to handle the digital to analog conversion operation in the
STM32F407VGT6 microcontroller. There are two independent 12-bit DACs within this
module. Each DAC has a buffered independent monotonic voltage output channel. Each
DAC has one output, one reference input, a digital to analog converter block, a data
register block, a control block, and a trigger block. Each DAC has a separate output
channel. These channels and their related pins are listed in Table 1.3.

DACs can run in single or dual conversion modes. In the single conversion mode,
each DAC can be configured, triggered, and controlled independently. In dual mode,
DACs can be configured in 11 possible conversion modes. The DAC module is clocked
directly from the APB1 clock and can give an output with or without a trigger. There
can be no DAC triggers, or they can be set as internal hardware, external hardware, or
software. If no hardware trigger is selected, data stored in the DAC data holding register,
(DAC�DHRx), are automatically transferred to the DAC output register, (DAC�DORx),
after one APB1 clock cycle. When a hardware trigger is selected and a trigger occurs, the
transfer is performed three APB1 clock cycles later. The analog output voltage becomes
available after a settling time that depends on the power supply voltage and the analog

Table 1.3 The STM32F4 microcontroller analog
output channels.

Pin Number Pin Name Channel Name

29 PA4 DAC_CHANNEL1

30 PA5 DAC_CHANNEL2
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output load. The DAC output register (DOR) value is converted to output voltage on a
linear scale between zero and the reference voltage. This value can be calculated as

DACoutput = VREF ⇥
DOR
4095

(1.2)

DACs have output buffers that can be used to reduce the output impedance and to
drive external loads directly without having to add an external operational amplifier.
These buffers can be enabled or disabled through software. In this book, we will only use
the single conversion operation mode in DAC.

buffer
A circuit in which data are stored while it is being processed or transferred.

TheHAL library provides generic and extended functions to control the DACmodule.
The DAC module must be initialized before it is used. Then, the AHB clock should be
enabled. The GPIO output pin should be configured as analog output in the specific
package initialize function. Then, the output buffer and DAC channel trigger should be
configured. Next, the DACmodule should be started in blocking (polling), non-blocking
(interrupt), or DMA mode. Finally, the digital data should be transferred to the output
register to set the analog output value.

We provide three sample projects on the usage of DAC functions in Online_

Student_Resources\Lab1\DAC_Examples. In the first project, the DACmod-
ule is configured for 12-bit single conversion to output from Channel 1 (PA4 pin)
without triggering. In the second project, the DAC module is used with a software
trigger. Here, the PA4 pin is used as the DAC channel output and DAC is configured
for 12-bit conversion every second using delays. In the third project, the DACmodule is
used with a timer trigger. Here, the PA4 pin is used as the DAC channel output and the
DACmodule is configured for 12-bit conversion every second via the basic timer TIM6.
TIM6 is configured to update TRGO output once the counter reaches its maximum
value. DAC is triggered with this TIM6 TRGO output.

Direct Memory Access

DMA is a special module of the microcontroller. Through it, data transfer can be
conducted in the background without using CPU resources, which means the CPU can
conduct other tasks at the same time.

The STM32F407VGT6 microcontroller has two DMA modules with a total of 16
streams (8 per unit). Each stream has up to eight selectable channels. Each channel is
dedicated to a specific peripheral and can be selected by software. Each channel has
a First In First Out (FIFO) buffer with a length of four words (4 ⇥ 32 bits). These
buffers can be used in FIFO mode to temporarily store the incoming data. Then, data
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transfer can be initiated when the selected threshold value is reached. Threshold values
can be 1/4, 2/4, 3/4, or full. FIFO buffers can also be used in direct mode to transfer
data immediately. To transfer data, either normal or circular mode can be selected. The
second mode will be especially useful while handling circular buffers, which we will
consider in Chapter 11.

First In First Out
FIFO is a method for organizing and manipulating a data buffer, where the oldest (first) entry, or “head” of
the queue, is processed first.

DMA modules in the STM32F407VGT6 microcontroller can initiate data transfer
frommemory to memory, frommemory to peripheral, and from peripheral to memory.
When the memory to memory transfer mode is selected, only the second DMAmodule
can be used. Here, circular and direct modes are not allowed. The data width for the
source and destination can be set as one byte (8 bits), half-word (16 bits), or word (32
bits). The DMA module can be configured for incrementing source and destination
addresses automatically after each data transfer.

There are four different stream priorities for handling multiple DMA streams. If
multiple DMA streams have the same priority, hardware priority is used (e.g., stream
0 has priority over stream 1). Burst transfer can be used when FIFO mode is selected.
Here, the burst size can be selected as 4⇥, 8⇥, or 16⇥ a data unit. FIFO buffers can also
be configured as double buffer to support the ping–pong data transfer structure, which
we will consider in Chapter 11.

We provide two sample projects on the usage of the DMA module in Online_

Student_Resources\Lab1\DMA_Examples. In the first project, the content of
a buffer is copied to another buffer in direct mode. In the second project, data are read
from the ADC module and written into a buffer. The ADC module is triggered with
software as explained in Section 5.3.

1.4.5 Measuring Execution Time by Setting Core Clock Frequency

We will use the DWT unit introduced in Section A.5 to measure the execution time
of a code block. We will demonstrate its usage when the core clock is set to a certain
frequency. As in Section A.5, the time.h header file should be added to the project. In
order to set the core clock frequency, we will use the function SystemClock�Config

in the hal�config.h header file.

Measuring Execution Time without the SysTick Timer

The first method of measuring the execution time does not use the SysTick timer. This
timer is used as a time base. When the HAL�Init function is called in the code, it is
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configured to create an interrupt every millisecond. However, the SysTick timer is not
used when the DWT unit is used for measuring the execution time. If used by mistake,
its interrupt generates additional clock cycles.

We provide a sample project on measuring the execution time of a code block
in Online_Student_Resources\Lab1\Measure_Execution_Time_I.
Here, the core clock is set to 168 MHz. There are some HAL functions used in this
code. Therefore, you should arrange the project as explained in Section 1.4.3. Then, you
can add the code block to be measured in the indicated place.

There are some differences between this code and the code mentioned in
Section A.5. The first difference is in writing the core clock frequency. Here, the
line CoreClock = SystemCoreClock is used instead of writing the core clock
frequencymanually to the CoreClock variable. This feature can only be used when the
STM32Cube is enabled in the project. The second difference is in the HAL�Init and
SystemClock�Config functions. They are used for setting the core clock frequency.
The third difference is in the HAL�SuspendTick function. This function is used for
disabling the SysTick timer interrupt.

In order to test the method introduced in this section, use the example given in
Section A.5. Add a for loop with 2000000 iterations in the indicated place in the exam-
ple code and run it. Observe the number of clock cycles and execution time. You can also
use the State and Sec registers described in Section A.5 to measure the execution time.

Measuring Execution Time with the SysTick Timer

The second method of measuring the execution time is by using the SysTick timer. You
should be aware that this method gives a time resolution at the millisecond level. We
provide a sample project on measuring the execution time in Online_Student_

Resources\Lab1\Measure_Execution_Time_II. Here, the core clock is set
to 168 MHz. There are some HAL functions used in this code. Therefore, you should
arrange the project as explained in Section 1.4.3. Then, you can add the code block to be
measured in the indicated place.

If there is some additional code between the clock configuration and the code block
to be measured, the SysTick timer must be disabled after configuring the clock. Then,
using the HAL�ResumeTick function, the SysTick timer should be enabled before
the code block to be executed. Execution time can be obtained in milliseconds using
the HAL�GetTick function after the code block to be measured. Test this method by
adding a for loop with 2000000 iterations in the indicated place in the code. Observe
the execution time.

1.4.6 STM32F4 Discovery Kit Onboard Accelerometer

There are two accelerometer types available depending on the STM32F4 Discovery kit
printed circuit board (PCB) revision. If the kit’s PCB revision is MB997B (revision B),
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then the LIS302DL accelerometer is available on the board. If the kit’s PCB revision is
MB997C (revision C), then the LIS3DSH accelerometer is available on the board. Both
devices are controlled by the SPI interface.

printed circuit board
A board made of fiberglass, composite epoxy, or other laminate material and used for connecting different
electrical components via etched or printed pathways.

Basic BSP accelerometer functions can be found in Keil_v5\Arm\Pack\Keil\
STM32F4xx_DFP\2.8.0\Drivers\BSP\STM32F4-Discovery\stm32f4_

discovery_accelerometer.c. In order to use these functions, the BSP must
be included in the project as explained in Section 1.4.3. A sample project on the us-
age of accelerometer functions is given in Online_Student_Resources\Lab1\
Accelerometer_Usage_I. Here, LEDs are turned on or off based on the board’s
motion. Four LEDs form a cross form between the two switches on the ST Discovery
board. Each LED is closer to one edge of the board than the others. We process the
accelerometer data so that the LED closest to the edge, facing downward, turns on.

1.4.7 The AUP Audio Card

The AUP audio card is a multipurpose audio expansion board. It is based on the
TLV320AIC23B chip, which is a stereo audio codec with a headphone amplifier. The
board is shown in Figure 1.6. We will use the AUP audio card to acquire audio signals.
Therefore, we discuss its features in detail below.

• Analog line-level input and output via 3.5 mm line in and out sockets.
• High quality headphone output and microphone input via 3.5 mm headphone and
microphone sockets.

• 8 to 96 kHz sampling-frequency support.
• Inter-IC sound (I2S)-compatible interface for audio stream.
• I2C-compatible interface for configuration.

Inter-IC sound
A serial communication bus interface designed to connect digital audio devices.

Connecting the AUP Audio Card

The AUP audio card is compatible with the STM32 Discovery kit. It can be connected
as shown in Figure 1.6.
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Figure 1.6 The AUP audio card. Photo by Arm Education.

Using the AUP Audio Card

In order to use the AUP audio card with the STM32F4 Discovery kit, the card must first
be configured. The function to configure the AUP audio card is AudioInit. While
calling the configuration function, the sampling frequency, input source, and mode
should be set. You can set the input source to digital microphone, analogmicrophone, or
line-in using one of the code lines in Listing 1.1. You can set the sampling rate using one
of the code lines in Listing 1.2 and set the mode using one of the code lines in Listing 1.3.
We will only use the IO�METHOD�INTRmode, which is an interrupt-driven mode.

sampling frequency
The reciprocal of the time delay between successive samples in a discrete-time signal.
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We provided the “predefined constants” for the “input source,” “sampling rate,” and
“acquisition mode” of the audio card used in Listing 1.1, 1.2, and 1.3. In fact, all
these definitions have been made in the hal_config.h file. The user can use these
within the AudioInit function. For example, within the LTEK_Example_Keil
project, they are used as AudioInit(FS_32000_HZ,AUDIO_INPUT_MIC,IO_
METHOD_INTR).

1 AUDIO_INPUT_LINE
2 AUDIO_INPUT_MIC

Listing 1.1 Setting the input source to digital microphone.

1 FS_8000_HZ
2 FS_16000_HZ
3 FS_22050_HZ
4 FS_32000_HZ
5 FS_44100_HZ
6 FS_48000_HZ
7 FS_96000_HZ

Listing 1.2 Setting the sampling rate.

1 IO_METHOD_INTR
2 IO_METHOD_DMA
3 IO_METHOD_POLL

Listing 1.3 Setting the mode.

1 void ProcessData(I2S_Data_TypeDef* I2S_Data)
2 /* Process data of the left channel. */
3 if (IS_LEFT_CH_SELECT(I2S_Data->mask))
4 I2S_Data->output_l=I2S_Data->input_l;
5
6 /* Process data of the left channel. */
7 if (IS_RIGHT_CH_SELECT(I2S_Data->mask))
8 I2S_Data->output_r=I2S_Data->input_r;
9
10 }

Listing 1.4 The ProcessData function.

The function for transmitting and receiving data from the AUP audio card is
ProcessData. You should provide this function in the main code as given in List-
ing 1.4. The left and right audio channels can be selected using theIS�LEFT�CH�SELECT

and IS�RIGHT�CH�SELECT macros. The I2S�Data structure contains the mask,
input, and output data.



Chapter 1: Digital Signal Processing Basics 29

We provide a sample project on the usage of the TLV320AIC23B codec functions
in Online_Student_Resources\Lab1\L-Tek_Example. The code in the
project simply forms a loop between ADC input and DAC output on the AUP audio
card. Data coming from microphones are directly fed to headphone output in the
ProcessData subroutine.

1.4.8 Acquiring Sensor Data as a Digital Signal

We will use sensors on the STM32F4 Discovery kit and the AUP audio card to form
digital signals. We will begin with the accelerometer.

Task 1.1

We provide the sample project to acquire accelerometer data in Online_Student_
Resources\Lab1\Accelerometer_Usage_II. Use this project to acquire the
sensor data for 1000 samples. Data are stored in the buffer array. While acquiring the
data, shake the STM32F4 Discovery kit along the x-axis. To note here, the direction of
this movement should be along the widest side of the ST Discovery kit with the mini
USB connector facing forward. Observe the acquired data through the watch window as
explained in Chapter 0.

Task 1.2

Now, we will use the internal temperature sensor. Use the ADC functions to acquire the
temperature data for 1000 samples. To obtain data from the temperature sensor, make
necessary adjustments as explained in Section 1.4.4. Observe the acquired data through
the watch window as explained in Chapter 0.

Task 1.3

Finally, we will use the AUP audio card. Use the AUP audio card to acquire the audio
signal when the word “HELLO” is spelled. Set the sampling rate to 32 kHz and buffer
size to 32000. Store 1 s of audio signal in an array. Please refer to Section 1.4.7 to use
the AUP audio card effectively. Observe the acquired data through the watch window as
explained in Chapter 0.

Here, you should observe what actual sensor data look like. To note here, we will not
process these data in real time until Chapter 11.We will only acquire the sensor data and
process them offline. We follow this strategy so we do not have to deal with real-time
signal processing concepts while introducing the basics of digital signal processing.


